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SUMMARY

A general method for the post-processing treatment of high order finite element fields is presented.
The method applies to general polynomial fields, including discontinuous finite element fields. The
technique uses error estimation and h-refinement to provide some optimal visualization grid. Some
filiering is added to the algorithm in order to focus the refinement on a visualization plane, one on the
computation of one single iso-zero surface. Some 2D and 3D examples are provided that illustrate the
power of the technique. In addition, schemes and algorithms that are discussed in the paper are readily
available as part of an open source that is developped by the authors, namely Gmsh. Copyright c©
2005 John Wiley & Sons, Ltd.
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1. Introduction

In the recent years, a large research effort has been devoted to the development of high
order finite element discretization techniques: spectral element methods [6], high order finite
elements [3, 2] or high order Discontinuous Galerkin Methods [12, 1, 5]. Our focus is high order
Discontinuous Galerkin Methods (DGM). Those are now used extensively for solving transient
aeroacoustics problems [10], electromagnetic problems [14], dynamics of compressible fluids
[13, 12], Kortenweg-de Vries (KdV) equations [15] and many other relevant physical problems.
Using a quadrature free approach together with a very careful BLAS3 implementation, our
experience show that, with 5th or 6th order polynomials on a tetrahedral mesh, we can run
a DGM code for which we use about 80 percent of the peek performance of an off-the-shelf
desktop computer. This makes high order DGM a very competitive approach.

In contrast, most of the finite element post-processing tools are unable to provide accurate
high order visualizations. Typically, quadratic elements are the highest available order for
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2 J.F. REMACLE, N. CHEVAUGEON E. MARCHANDISE C. GEUZAINE

visualization. In this paper, we propose a robust and efficient methodology for the visualization
of high order finite element solutions. This work includes the issues of contouring, iso-surfacing
and cutting. The methodology is inspired by h-adaptive finite element techniques [12, 13].

In all what follows, computer efficiency is always a central concern and we will be always
careful when it comes to cpu time issues. When plots and images of 2D and 3D results will be
shown, we will always indicate computation time and number of rendered polygons.

Another concern that we have is compatibility. We think that it is the post-processor that
has to adapt to the solver and not the inverse. In our developments, it is the solver that dictates
how fields are interpolated and how elements are mapped. This means that we should be able
to visualize any kind of finite element solutions, continuous or not, using any sort of shape
functions.

Finally, we think that providing some kind of source code is essential in this kind of business.
An implementation of our methodology is readily available as an open source code. Gmsh[8]
is an automatic 3D finite element grid generator (primarily Delaunay) with a build-in CAD
engine and post-processor. Its design goal is to provide a simple meshing tool for academic
problems with parametric input and up to date visualization capabilities. Gmshis copyright
c©1997-2004 by C. Geuzaine and J.-F. Remacle and is distributed under the terms of the
GNU General Public License (GPL). The high order visualizations techniques described in
this paper have been added to Gmsh. All the illustrations shown below have been done with
Gmsh.

2. High order discontinuous finite elements

Finite element methods (FEMs) involve a double discretization. First, the physical domain Ω
is discretized into a collection of Ne elements

Te =

Ne
⋃

e=1

e (1)

called a mesh. This first step is the one of geometrical discretization. Then, the continuous
function spaces (infinite dimensional) are replaced by finite dimensional expansions. The
difference between the DGM and classical Finite Element Methods (FEMs) is that the solution
is approximated in each element separately: No a priori continuity requirements are needed.
The discrete solution may then be discontinuous at inter-element boundaries. Figure 1 shows
a typical situation of three elements e1, e2 and e3. The approximated field u is smooth in each
element but may be discontinuous at inter-element boundaries.

Consider a scalar field u(x, y, z). In each element, it is usually polynomial spaces that are
chosen for approximating u. The approximation of u over element e, noted ue is written

ue =

d
∑

j=1

φj(ξ, η, ζ)U(e, j)

where the U(e, j) are the coefficients of the approximation or degrees of freedom, where d is
the size of the discrete function space and where φj(ξ, η, ζ) is the jth approximation function
defined in a common parametric space ξ, η, ζ. In each element, we have d coefficients, and,
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EFFICIENT VISUALIZATION OF HIGH ORDER FINITE ELEMENTS 3
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Figure 1. Three elements e1, e2 and e3 and the piecewise discontinuous solution u.

because we consider (this is the most general case) that all approximations are disconnected,
Ne×d coefficients are required for describing u. In our implementation, we organize those data
in a Ne × d matrix that we call U . Uij is therefore the jth component of ui. We use the GNU
scientific library (GSL) for manipulating matrices and vectors. The GSL have the advantage
to provides direct and easy bindings to the Basic Linear Algebra Subroutines (BLAS).

The element e itself may be geometrically high order. We define the geometrical mapping
as the mapping that transforms a reference element into the real element:

xe = xe(ξ, η, ζ) , ye = ye(ξ, η, ζ) , ze = ze(ξ, η, ζ),

with

xe =
m

∑

j=1

ψj(ξ, η, ζ)X(e, j),

ye =

m
∑

j=1

ψj(ξ, η, ζ)Y (e, j),

ze =

m
∑

j=1

ψj(ξ, η, ζ)Z(e, j).

Matrices X , Y and Z are of size m× 3.
Our goal is to be able to treat (i.e. visualize) any piecewise polynomial approximation. For

that purpose, our visualization methodology has to

• enable the represent of discontinuous fields,
• distinguish geometric and functional discretization,
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4 J.F. REMACLE, N. CHEVAUGEON E. MARCHANDISE C. GEUZAINE

• be able to use any set of polynomial interpolation function.

The fact that we have disconnected interpolations by defining as much coefficients as Ne × d
allow naturally to represent discontinuous fields. The fact that we consider the general case of
non-isoparametric elements, which means that d 6= m and φi 6= ψi, enables us to distinguish
geometric and functional discretizations.

Here, we only consider polynomial approximations. Usual FEM have limited choices for the
φi’s due to the a priori continuity requirements of the approximation. Nodal, hierarchical,
Serendip or non-conforming basis are among the usual basis for classical FEMs. In the general
case of a DGM, there are no limitations for the choice of the φi’s. For giving the a general
form to our φi’s, we define the two following matrices. The first matrix, named P , is of size
d× 3. Matrix P allow the definition of a canonical polynomial basis:

P = {p1(ξ, η, ζ), . . . , pd(ξ, η, ζ)}

where
pi = ξPi1ηPi2ζPi3 .

This basis is then used for building the φi’s. For that, we define the coefficient matrix Φ of
size d× d and we write

φi =

d
∑

k=1

pkΦik .

For example, the a bilinear isoparametric quadrilateral element, we have

P =









0 0 0
1 0 0
0 1 0
1 1 0









,Φ =
1

4









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1









, P = {1, ξ, η, ξη} and

φ =
1

4
{(1 + ξ)(1 + η), (1 + ξ)(1 − η), (1 − ξ)(1 − η), (1 − ξ)(1 + η)} .

This way of building the basis allow to define any polynomial basis, complete or not, of any
dimension. The advantage is that any FEM code can use the tool, eventually Gmsh, without
having to change its own representation to the one of the post-processor.

The same technique is used for describing geometrical mappings in the general form. A high
order finite element visualization structure is described in Algorithm 1. The DGM allow the
use of exotic polynomial approximations and are, therefore, a good support for testing our
visualization methodology.

3. Contouring high order fields

One interresting approach to high order contouring can be found in [9]. This approach is
based on the definition of some kind of algebra of high order textures. Each basis function
φi correspond to one basis texture and the final visualization object is constructed by linear
combination of basis textures. Figure 2 show an example of this approach. Quadratic textures
s1, s2 and s3 corresponding to hierarchical shape functions associated to the edges of a triangle
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EFFICIENT VISUALIZATION OF HIGH ORDER FINITE ELEMENTS 5

Algorithm 1 A general structure for the definition of high order finite element solution.

struct _high_order_fem {

// coefficients for the element mappings

GSL_Matrix X,Y,Z;

// coefficients for the function

GSL_Matrix U;

// Canonical matrices for U and for the mapping

GSL_Matrix PU,PM;

// Interpolation matrices

GSL_Matrix PHIU,PHIM;

};

s1 s2 s3 s1 + s2 + s3

Figure 2. Illustration of the visualization technique developed in [9] based on high order textures.

are shown. They are subsequently summed and the result s = s1 + s2 + s3 is computed as the
graphic sum of the basis textures. Disappointingly, this technique relies heavily on the graphic
hardware and very few off-the-shelf graphic cards allow to perform those kind of combinations
efficiently. Also, the most common graphical API, i.e. OpenGL, does not fully support linear
combination of textures.

More important, this approach has aspects that are way too restrictive for finite element
visualizations. The number of isocontours, for example, cannot be changed easily because basis
textures contain a fixed number of colors. Changing to a different scale, a logarithmic scale for
example, is difficult because the logarithm of the sum is not the sum of the logarithms. Also,
extracting iso-surfaces or plane cuts out of 3D data is not straightforward with this approach.

Here, we focus on what we believe to be a more convenient approach. Contouring high order
FEM fields is difficult because of the topological complexity of high order curves and surfaces.
If we consider 7th or 9th order approximations ue on a triangle, the shape of one iso-contour of
ue = C may be very complex (it could even be not connected). Only piecewise linear (p = 1)
interpolations allow straightforward representation: one iso-contour is a straight line, one iso-
surface is a polygon. We assume here that our visualization tool is able to deal with piecewise
linear simplices: lines, triangles and tetrahedra. It is also able to draw bi- and tri-linear fields
on quadrangles and hexahedra. In Gmsh, this is done by splitting quadrangles and hexahedra
into simplices and doing linear visualization.

One robust approach of high order visualization consist therefore in dividing the elements
into sub-elements and doing a linear visual approximation on every sub-element. The main
problem here is “how far do we have to divide in order to capture the complexity of the high

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 00:1–6
Prepared using nmeauth.cls



6 J.F. REMACLE, N. CHEVAUGEON E. MARCHANDISE C. GEUZAINE

order field”?. For addressing that issue, we use here h-refinement. The problem is made simpler
here by the fact that we know the exact visualization error i.e. the difference between ue and
its “drawable” piecewise linear representation.

4. Visualization mesh

The technique we use here is based on classical AMR (Automatic Mesh Refinement)
methodologies, see for example [4, 12]. For each element type (triangle, quad, tetrahedron,
hexahedron), we define a template for dividing the element itself recursively into sub-elements
of the same type. As an example, the refinement template is shown for the triangle on Figure

r = 0, Nr = 3 r = 2, Nr = 15 r = 4, Nr = 153

Figure 3. Some AMR refinement templates for triangles at different resolution levels.

3 at different recursion levels r. The element sub-division pastern is performed in the reference
system of coordinates ξ, η, ζ. For a given maximal recursion level r, we obtain an array of Nr

visualization points ξi, ηi and ζi with

Nr =
1

2
(2r + 1)(2r + 2)

for triangles,
Nr = (2r + 1)2

for quadrangles,

Nr =
1

6
(2r + 1)(2r + 2)(2r + 3)

for tetrahedra and
Nr = (2r + 1)3

for hexahedra. Using previous definitions, we construct the following interpolation matrix

Iij = φj(ξi, ηi, ζj)

of size Nr × d. Matrix I is computed once and stored. The value of ue at visualization points
is computed efficiently using a simple matrix-vector product

ue(ξi, ηi, ζi) = IijU(e, j).

This product can be done efficiently using BLAS2 routines [7]. Typically, around one GigaFlop
can be obtained for p > 4 and r > 4 on a 2.4 GHz Pentium IV Xeon. Our experience has shown
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EFFICIENT VISUALIZATION OF HIGH ORDER FINITE ELEMENTS 7

us that it was faster to compute a large amount of points using fast linear algebra techniques
than only computing values when needed.

The number of triangles or quadrangles at recursion level r is 4r and the number of
tetrahedron or hexahedron is 8r. All sub-elements should not always be visible: some kind
of error analysis should be done in order to decide wether a given triangle is visible or not.
This decision has to be goal oriented i.e. it should depend on what has to be visualized:

• A 2D colormap of the field in linear or logarithmic scale,
• 3D iso-surfaces,
• One given iso-contour or iso-surface,
• The area delimited by the positive region of a levelset surface,
• A zoom of a given area.

As an example, we represent one 9th order Lagrange shape function in the reference triangle.
In one case, we want to visualize the function using filled (colored) iso-values. In the other
case, we want to represent one given iso-value ue = C. Figure 4 show the two different adapted
visualization grids relative to the two pre-defined visualization goals. We can do the same with

Figure 4. Visualization of one 9th order Lagrange shape function. On left, we see the visualization
mesh for the goal |u − uh| < 0.001. On center, we see the visualization mesh that has been optimized
in order to capture accurately one given iso-contour u = 0.5. On right, we see the corresponding

visualization results i.e a colormap and, in black, the iso-contour u = 0.5.

3D views on tetrahedral meshes and an example is shown at Figure 5.

5. Visualization error

We aim here to use classical h-refinement finite element techniques in order to optimize the
visualization mesh. For that, we should be able to estimate the visualization error. In a classical
posteriori error analysis, the “Quest of the Graal” is to find local error. Indeed, if the error
at a point is known, so is the exact solution. It is usually estimations of L2 or H1 that are
available. In this case, and contrary to the case of finite element a posteriori error estimation,
the exact error is known: the exact field, ue, being the one defined by the high order polynomial
interpolation and the approximate one, ue

h being the piecewise linear field defined on the
visualization mesh. The exact local visualization error ε is therefore simply defined as ue −ue

h.
In this, our aim is to build an adapted visualization mesh while only using values computed
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8 J.F. REMACLE, N. CHEVAUGEON E. MARCHANDISE C. GEUZAINE

r = 2 r = 4

r = 7 r = 7 plus vis. mesh

Figure 5. Visualization of one 4th order function on one single tetrahedron. Figures show one iso-surface
using different error thresholds. Last figure (bottom-right) show the visualization mesh together with

the iso-surface.

at the positions ξi, ηi, ζi defined by the interpolation matrix Iij . Let us consider the triangular
element depicted in Figure 6. We look if triangle e with nodal values u1, u2 and u3 has to
be subdivided. At mid points, the exact solution u12, u13 and u23 is available because it
correspond to the ξi, ηi, ζi of child subdivisions. At those midpoints, linear approximations
would give average values 1

2
(u1 +u2),

1

2
(u1 +u3), and 1

2
(u2 +u3). We define the following error

indicator

εe = max (|u1 + u2 − 2u12| , |u1 + u3 − 2u13| , |u2 + u3 − 2u23|)

= max (εe
12
, εe

13
, εe

23
)

which is similar to what ca be found in [11]. Note that, for example,

εe
12

= |u1 + u2 − 2u12| = h2

η

∣

∣

∣

∣

∂2u

∂η2

∣

∣

∣

∣

+ O(h3

η)

so that the error indicator εe is a measure of the maximal second derivative of the exact field.
We also see that, if we choose a maximal recursion level of r, then, element sizes are reduced
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Figure 6. One triangular element and its subdivision.

by a factor 2r and the visualization error is reduced by 22r. We proceed in the same way for
other element types. Elements are subdivided recursively until εe < ε̄ where ε̄ is a threshold
value.

The main advantage of this approach is its simplicity. Nodal values are computed once for
all and the error indicator only involves some few arithmetic operations. Hence, the approach
has a major drawback. If a feature has a characteristic size that is much smaller than the size
of e, it can be missed by the procedure. This is especially true at low recursion levels. So, at
low recursion levels, more points are considered to compute the error indicator. The right part
of Figure 6 shows the 2 recursion levels configuration. The error in element e is still computed
as the maximal numerical second derivatives at all interior points

εe = max (εe
12
, εe

13
, εe

23
, εe

112
, εe

122
, εe

113
, εe

133
, εe

223
, εe

233
, εe

1123
, εe

1223
, εe

1233
)

with
εeij = |2uij − ui − uj | ,

εeijj =

∣

∣

∣

∣

2uijj −
1

2
ui −

3

2
uj

∣

∣

∣

∣

and

εeijjk =

∣

∣

∣

∣

2uijjk − uj −
1

2
(ui + uj)

∣

∣

∣

∣

.

6. Visualization mesh adaptation

We now describe how we choose adaptively the sub-elements that are visible. The sub-element
data structure is described on Algorithm 2. We apply a recursive pattern for doing the mesh
refinement and the subelement data structure is build like a multi dimensional tree. For
example, one triangular subelement has 4 children while a hexahedron subelement has 8.

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 00:1–6
Prepared using nmeauth.cls



10 J.F. REMACLE, N. CHEVAUGEON E. MARCHANDISE C. GEUZAINE

There is only one instance of the subelement data structure : nodal values are updated for
each element using one BLAS2 matrix-vector multiplication. We call the root the initial

Algorithm 2 Visualization element class.

struct _subelement {

static int nbChilderen;

static int nbNodes;

int visible;

int *node_numbers;

_element *child;

};

unrefined element who is, in fact, the ancestor of all sub-elements. The mesh adaptation is
done in one recursion pass. On the way down of the recursion process, we compute the exact
error and decide weather it is useful to go to a downer level. On the way up of the recursion,
we may apply some filtering i.e. eliminate useless parts of the view. The filter may only allow
sub-elements whose nodal values are in a prescribed range (the case of the capture of one
given iso-surface). Another useful filter only allows to draw sub-elements that intersect a given
plane (the case of a planar cut in a 3D view). Algorithm 3 presents C++ code that is used to
determine which sub-elements of the root element are visible.

7. Two Dimensional Examples

7.1. Vortex-in-a-box

This example is usually chosen in order to test the ability of a numerical scheme to accurately
resolve thin filaments on the scale of the mesh which can occur in stretching and tearing flows.
We consider the following stream function

ψ =
1

π
sin2(πx) sin2(πy) (2)

that defines the following velocity field

vx = ∂yψ = cos(2πy) sin2(πx)
vy = −∂xψ = − cos(2πx) sin2(πy)

(3)

We consider a disk of radius 0.15 placed at (0.5, 0.75) and the distance function u2

0 =
(x− 0.52) + (y − 0.75)2 − 0.152. We aim to compute the following hyperbolic problem

∂tu+ vx∂xu+ vy∂yu = 0

on a square domain of size [1, 1] and with u = u0 as initial conditions. The flow satisfies
vx = vy = 0 on the boundaries of the unit square. The resulting velocity field stretches out
the circle into a very long and thin filaments. For solving this problem, we use a 32 × 32
quadrilateral grid with a fourth-order (p = 4) DGM for space discretization. A fifth order
explicit Runge-Kutta is used for time stepping. Some visualization results are shown at time
step 1000.
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Algorithm 3 Recursive algorithm that determines the set of visible sub-elements. The
algorithm is first called with the root element as first argument. It goes down in the sub-
element layers, stopping when the error is below a given threshold eps 0. If the algorithm
goes down to the deepest layer of the subelement tree, then the return value of the function
recur visible is false. More layers can be computed in order to ensure that the required
accuracy is reached.

bool recur_visible ( _subelement *e , double eps_0 ){

if(!e->child[0])

{

// Max recursion has been attained without having

// reached desired accuracy

e->visible = 1;

return false;

}

else

// compute error using the 1- or the 2-level formula

double eps = compute_error ( e );

if (eps > eps_0){

e->visible=0;

accuracy_reached = true;

for (i=0;i<e->nbChilderen;++i)

accuracy_reached &= recur_visible (e->child[i],eps_0);

return accuracy_reached;

}

else{

e->visible=1;

return true;

}

}

};

Figures 7 and 8 show an adaptive visualization. Figures 7–(a) and 7–(b) show the unrefined
mesh (1024 quads) and the unrefined visualization. Figures 7–(c) and 7–(d) show results for
a visualization error of ε̄ = 10−2: the visualization mesh 7–(c) is made of 4021 quads and
the maximal recursion level required for obtaining the target error everywhere is r = 4. The
computation time for generating 7–(d) was 0.02 seconds. Figures 7–(e) and 7–(f) show results
for a visualization error of ε̄ = 10−3: the visualization mesh 7–(e) is made of 46747 quads and
the maximal recursion level required for obtaining the target error everywhere is r = 6. The
computation time for generating 7–(f) was 0.24 seconds.

Figure 8 shows an adaptive visualization that targets to capture accurately only the iso-zero
of function u. Figures 8–(a) and 8–(b) show the unrefined mesh (1024 quads) and the unrefined
visualization. Figures 8–(c) and 8–(d) show results for a visualization error of ε̄ = 10−2: the
visualization mesh 8–(c) is made of 2032 quads. The computation time for generating 8–(d)
was 0.03 seconds. Figures 8–(e) and 8–(f) show results for a visualization error of ε̄ = 10−3:
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12 J.F. REMACLE, N. CHEVAUGEON E. MARCHANDISE C. GEUZAINE

the visualization mesh 8 (e) is made of 6454 quads and the computation time for generating
8–(f) was 0.08 seconds.

In the case ε̄ = 10−3, the maximal recursion level required for obtaining the desired accuracy
was r = 6. The equivalent uniformely refined mesh contains therefore 1024 × 46 quads, i.e. a
little more than four million quads. Our procedure allows to reduce this by a factor 650 in the
case of the iso-zero computation.

8. Three Dimensional Examples

8.1. Deformation of a sphere

A sphere of radius .15 is placed within a unit computational domain at (.35, .35, .35) in a
velocity field given by:

vx = 2 sin2(πx) sin(2πy) sin(2πz)g(t)

vy = − sin(2πx) sin2(πy) sin(2πz)g(t)

vz = − sin(2πx) sin(2πy) sin2(πz)g(t)

(4)

The time dependence g(t) is given by:

g(t) = cos(πt/T ),

where the reversal time period is chosen to be T = 3. This three-dimensional incompressible
flow field combines a deformation in the x-y plane with a similar one in the x-z plane. The
sphere is subsequently deformed by the flow.

We have computed this problem using a non uniform hexahedral mesh composed of 32787
elements. Some results of visualization are presented in Figure 9. Left figures were computed
using a target error of ε̄ = 10−3 while ε̄ = 10−4 was used for the three right sub-figures of
Figure 9. The hehahedral refined mesh for the left and right figures is composed of 66172 and
405784 elements respectively. Some 48426 triangles and 20585 quadrangles were used to draw
the iso-zero in the ε̄ = 10−3 case. About 500000 triangles and 227000 quadrangles were used
in the ε̄ = 10−4 case. Note that a maximal recursion level of r = 6 was necessary to obtain
the desired accuracy of ε̄ = 10−4. An element that has reached this level of recursion has been
cut into 86 = 262144 sub-elements. Only a fraction of these sub-elements are visible. A fully
refined visualization mesh would have required to process 32787× 262144 ' 8.5 109 elements.
Here, 405784 visualization cells correspond to about 21000 times less than the equivalent fully
refined mesh. Figure 10 shows visualization results at different time steps for a target error
of ε̄ = 10−4. More than 4 million polygons are used at time step 2500. For that specific time
step, only 12 seconds of cpu time were necessary to build up the polygons, including the
adaptive algorithm and the cutting of the 1084850 resulting hexahedra. Note that the visible
irregularities of the iso-surface at time step 2500 are caused by the numerical scheme (the
mesh is too coarse) and not to the accuracy of the visualization algorithm.

8.2. Propagation of acoustic modes in a duct.

We consider the problem of the propagation of acoustic modes in a quarter of a engine duct.
The geometry of the problem as well as the discretization mesh are represented in Figure
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EFFICIENT VISUALIZATION OF HIGH ORDER FINITE ELEMENTS 13

(a) (b)

(c) (d)

(e) (f)

Figure 7. Visualization of function u at time step 1000 for the Vortex In a Box problem.

11. We have solved the Linearized Euler Equations (LEE) using 4th order polynomials and
a Discontinuous Galerkin formulation. We have used our visualization algorithm for drawing
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Visualization of the iso-zero of function u at time step 1000 for the Vortex In a Box problem.

contours of the acoustic pressure on both y = 0 and z = 0 planes with a target error of
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non adaptive ε̄ = 10−3 ε̄ = 10−4

non adaptive ε̄ = 10−3 ε̄ = 10−4

ε̄ = 10−3 ε̄ = 10−4

Figure 9. Visualization of the iso-zero for the problem of the deformation of the sphere. Left figures
were computed using a target error of ε̄ = 10−3 while ε̄ = 10−4 was used for the three right sub-figures.
Top figures shows the iso-zero. Middle sub-figures show the visualization polygons. Bottom sub-figures

shows the volume visualization mesh.

ε̄ = 10−4. Figure 13 shows visualization results in both refined and unrefined cases. Clearly,
the non-adaptive visualization strategy fails to obtain any relevant results. Figure 12 shows
a zoom of the adaptive mesh in the z = 0 plane. Only 3 seconds of cpu time were needed
to generate the adaptive results. There are about one million polygons in each visualization
plane.
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time step 0 time step 500

time step 1000 time step 1500

time step 2000 time step 2500

Figure 10. Adaptive visualization of the iso-zero for the problem of the deformation of the sphere at
different times for a target error of ε̄ = 10−4.
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Figure 11. Geometry of the engine duct together with the computational mesh. The mesh is composed
of 19395 tetrahedra.

Figure 12. View of the adaptive visualization plane in the z = 0 plane.

9. Conclusions

An adaptive technique for the visualization of high order finite element fields has been
developed. The technique is able to deal with general polynomial fields. Automatic mesh
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Figure 13. Visualization of the acoustic pressure field on both y = 0 and z = 0 planes. Top sub-figure
shows the unrefined visualization results. Bottom sub-figure shows adaptive visualization results.
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refinement (AMR) techniques have been used to generate optimal visualization grids. It has
been shown that the method was able to provide visualization results using only a small
fraction of the size that would have been required by an equivalent uniformely refined grid.

One of the main interests of the method developped here is its direct availability. An
implementation is provided in Gmshand this paper may be considered as a user’s guide.

As a future work, we will consider to extend the method the visualization of non polynomial
fields with a focus on the eXtended Finite Element Method (X-FEM). In X-FEM, non
polynomial enrichments are used for the representation of the solution of linear elasticity
at the vivinity of the crack tip for example.
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